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THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Reference Target Disparity map




Visual Bag of Words (VBoW) and
Textons

* In VboW a complex image is
split in small image patches

* Adictionary Is created by
clustering the patches called
textons

* When processing an image
each patch is compared to
the dictionary creating a
texton occurrence histogram

« Both intensity and gradient
textons are used
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Regression learning curves — Dataset #1

KNN (k=5)
linear

== neural net
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[ Reml [ Reom2 | |
e R RN N A NN R
| Stereo Aight time mss | 6:48 | 7:53 | 213 | 330 | 445 | 439 | 456 | 512 | 438 | 501 | 439 |
Niono g ime s | 541 | 17|45 | 75 st | 1007 | e[ 951 535 512 69
| Mean Square Error | 07 | 1.06 | 1.12 | 095 | 083 | 095 | 087 | 132 | 116 | 106 | 109 |
[ False Positve Rate [ 0.16 | 0.18 [ 0.13 | 01 | 0.IT | 0.08 | 013 [ 0,08 [ 0.1 | 008 | 0.1 |
| True Positive Rate | 09 | 0.4 | 057 | 038 | 038 | 04 | 035 [ 035 [ 06 | 039 | 047 |
| Stereo approaches | 20 | 31 | 8 | 14 | 19 | 22 | 22 | 19 [ 20 | 21 | 205 |
[ Mono approaches | 10 | 21 | 20 | 25 | 14 | 33 | 15 | 2 [ 1§ | 15 | 199 |
| Aucovemides | 0 | 6 | 2 | 2 [ T | 5 [ 2 [ 7 [ 3 [ 2 | 3 |
| Overrides ratio | 0| 072 | 03 | 027 | 02 | 049 | 042 | 071 | 056 | 038 | 041 |






https://www.youtube.com/watch?v=GZHE0E6AsSE
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